metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Dimethyl sulfoxide- κO)[2-({(ethylsulfanyl)[2-(2-oxidobenzylidene- κ O)hydrazinylidene- κN^2]methyl}iminomethyl)phenolato- κO dioxidouranium(VI)

Reza Takjoo,^a⁺ Seik Weng Ng^{b,c} and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 24 January 2012; accepted 28 January 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.030; wR factor = 0.063; data-to-parameter ratio = 17.5

The U^{VI} atom in the title complex, $[U(C_{17}H_{15}N_3O_2S)O_2-$ (C₂H₆OS)], exists within a distorted pentagonal-pyramidal geometry where the oxide atoms occupy axial positions [O- $U-O = 177.84 (14)^{\circ}$ and the pentagonal plane is defined by the N₂O₂ atoms of the tetradentate Schiff base ligand and the O atom of the dimethyl sulfoxide molecule. In the crystal, centrosymmetric aggregates are formed via pairs of $C-H \cdots O$ interactions. The azomethine C=N atoms and ethylthiolyl group are disordered over two orientations in a 0.828 (3):0.172 (3) ratio.

Related literature

For background to uranyl Schiff base complexes, see: Şahin et al. (2010); Özdemir et al. (2011).

‡ Additional correspondence author, e-mail: rezatakjoo@yahoo.com.

Crystal data

[U(C₁₇H₁₅N₃O₂S)O₂(C₂H₆OS)] $M_r = 673.54$ Monoclinic, $P2_1/n$ a = 11.6988 (3) Å b = 15.4972 (3) Å c = 12.2246 (3) Å $\beta = 105.714 (3)^{\circ}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)

 $T_{\min} = 0.333, T_{\max} = 0.508$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	3 restraints
$wR(F^2) = 0.063$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.98 \ {\rm e} \ {\rm \AA}^{-3}$
4927 reflections	$\Delta \rho_{\rm min} = -1.52 \text{ e } \text{\AA}^{-3}$
281 parameters	

V = 2133.47 (9) Å³

Mo Ka radiation

 $0.18 \times 0.12 \times 0.10 \; \rm mm$

19265 measured reflections

4927 independent reflections 4237 reflections with $I > 2\sigma(I)$

 $\mu = 7.84 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.044$

Z = 4

Table 1 Selected bond lengths (Å).

U-01	2.267 (3)	U-O5	2.395 (3)
U-O2	2.233 (3)	U-N1	2.547 (4)
U-O3	1.787 (3)	U-N3	2.603 (4)
U-O4	1.792 (3)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots O4^i$	0.95	2.48	3.322 (5)	147
Symmetry code: (i)	$-r \perp 1 - \nu \perp 1$	-7 ± 1		

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

We gratefully acknowledge financial support of this study by Ferdowsi University of Mashhad, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/ MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6614).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565. Özdemir, N., Şahin, M., Bal-Demirci, T. & Ülküseven, B. (2011). *Polyhedron*,

30, 515–521.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Şahin, M., Koca, A., Özdemir, N., Dinçer, M., Büyükgüngör, O., Bal-Demirci, T. & Ülküseven, B. (2010). Dalton Trans. 39, 10228–10237. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, m244-m245 [doi:10.1107/S1600536812003789]

(Dimethyl sulfoxide- κO)[2-({(ethylsulfanyl)[2-(2-oxidobenzylidene- κO)hydrazinylidene- κN^2]methyl}iminomethyl)phenolato- κO]dioxidouranium(VI)

Reza Takjoo, Seik Weng Ng and Edward R. T. Tiekink

Comment

Tetradentate ligands with N_2O_2 donor sets and their metal complexes are of great importance as they provide synthetic models for the metal-containing sites in metallo-proteins and metallo-enzymes, and display extensive catalytic and bioactive applications. Such considerations have motivated recent studies of uranyl Schiff base complexes (Şahin *et al.*, 2010; Özdemir *et al.*, 2011) and led to the synthesis of the title complex, (I).

The U atom in (I), Fig. 1, exists within a distorted pentagonal bipyramidal geometry with the axial positions occupied by the oxido-O atoms, O3—U—O4 = $177.84 (14)^\circ$. The pentagonal plane is defined by the N₂O₂ atoms, derived from the tetradentate Schiff base ligand, and the O atom of the dimethyl sulfoxide molecule, Table 1. The Schiff base ligand is somewhat buckled with the dihedral angle between the terminal benzene rings being 35.6 (2)°. The *S*-bound substituents are directed to one side of the molecule, Fig. 1.

In the crystal structure, centrosymmetric pairs of molecules are linked *via* C—H···O(oxido) interactions, Fig. 2 and Table 2. The dimeric aggregates stack into columns parallel to c, Fig. 3.

Experimental

UO₂(OAc)₂.2H₂O (0.42 g, 1.0 mmol) was added to an ethanol (20 cm³) solution of salicylaldehyde mono-*S*-ethylisothiosemicarbazone hydrobromide (0.32 g, 1.0 mmol) and salicylaldehyde (0.12 g, 1.0 mmol). The red solution was heated under reflux for 1 h at 70 °C. Red crystals of the product, (I), precipitated after three days, collected by filtration, washed with ethanol, and dried in air. Recrystallization was by slow evaporation (10 days) of a dimethyl sulfoxide solution of (I) which yielded red crystals. *M*.pt. 513 K. Yield: 46%.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, $U_{iso}(H)$ 1.2 to $1.5U_{eq}(C)$] and were included in the refinement in the riding model approximation. The ethylthiolyl unit is disordered over two positions; the minor component refined to a site occupancy = 0.172 (3). The U_{iso} parameters of the atoms of the minor component were constrained to be equal to U_{eq} of the major component. Pairs of S—C and C—C distances were restrained to within 0.01 Å of each other. The azomethine C=N unit is also disordered; the positions and anisotropic displacement parameters of the primed atoms were set to those of the unprimed ones. A short H…H contact (2.09 Å) involving the methyl groups of the disordered SEt residue and the DMSO molecule is noted. The final difference Fourier map had a peak at 0.91 Å from U and a hole at 0.11 Å from S1'. Owing to poor agreement, the (1 1 0) reflection was omitted from the final refinement.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO* (Agilent, 2010); data reduction: *CrysAlis PRO* (Agilent, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of (I) showing displacement ellipsoids at the 70% probability level. Only the major component of the disordered residue is shown.

Figure 2

A view of the centrosymmetric aggregate in (I). The C—H…O interactions are shown as dashed lines.

Figure 3

A view in projection down the c axis of the unit-cell contents of (I).

$(Dimethyl sulfoxide-\kappa O)[2-({(ethylsulfanyl)[2-(2-oxidobenzylidene- \kappa O < t >)hydrazinylidene- \kappa N^2]methyl}iminomethyl)phenolato- \kappa O]dioxidouranium(VI)$

Crystal data
$[U(C_{17}H_{15}N_{3}O_{2}S)O_{2}(C_{2}H_{6}OS)]$
$M_r = 673.54$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 11.6988 (3) Å
<i>b</i> = 15.4972 (3) Å
c = 12.2246 (3) Å
$\beta = 105.714 \ (3)^{\circ}$
V = 2133.47 (9) Å ³
Z = 4

F(000) = 1280 $D_x = 2.097 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8576 reflections $\theta = 2.2-27.5^{\circ}$ $\mu = 7.84 \text{ mm}^{-1}$ T = 100 KPrism, red $0.18 \times 0.12 \times 0.10 \text{ mm}$ Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2010)	$T_{\min} = 0.333, T_{\max} = 0.508$ 19265 measured reflections 4927 independent reflections 4237 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{\max} = 27.6^{\circ}, \theta_{\min} = 2.5^{\circ}$ $h = -14 \rightarrow 15$ $k = -20 \rightarrow 20$ $l = -15 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.063$ S = 1.01 4927 reflections 281 parameters 3 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0243P)^2 + 4.2587P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.98$ e Å ⁻³ $\Delta\rho_{min} = -1.52$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
U	0.364161 (13)	0.640410 (10)	0.689855 (13)	0.01292 (6)	
S1	0.15547 (15)	0.46851 (11)	0.34195 (14)	0.0341 (5)	0.828 (3)
S1′	0.0795 (7)	0.3967 (5)	0.5070 (7)	0.034*	0.172 (3)
S2	0.58169 (11)	0.77489 (8)	0.88184 (11)	0.0260 (3)	
01	0.4057 (3)	0.72624 (19)	0.5554 (3)	0.0171 (7)	
O2	0.3653 (3)	0.5871 (2)	0.8599 (3)	0.0257 (8)	
03	0.2236 (3)	0.69271 (19)	0.6677 (3)	0.0169 (7)	
O4	0.5046 (2)	0.58833 (18)	0.7065 (3)	0.0168 (7)	
05	0.4562 (3)	0.7596 (2)	0.8050 (3)	0.0220 (7)	
N1	0.3115 (3)	0.5629 (2)	0.4990 (3)	0.0145 (8)	
N2	0.1805 (3)	0.4702 (2)	0.5585 (3)	0.0211 (9)	0.828 (3)
C8′	0.1805 (3)	0.4702 (2)	0.5585 (3)	0.0211 (9)	0.172
N3	0.2299 (3)	0.5040 (2)	0.6674 (3)	0.0150 (8)	
C1	0.4713 (4)	0.7110 (3)	0.4855 (4)	0.0140 (9)	
C2	0.5515 (4)	0.7744 (3)	0.4682 (4)	0.0194 (10)	
H2	0.5603	0.8270	0.5096	0.023*	
C3	0.6170 (4)	0.7605 (3)	0.3915 (4)	0.0204 (10)	
Н3	0.6708	0.8036	0.3812	0.025*	
C4	0.6058 (4)	0.6841 (3)	0.3285 (4)	0.0195 (10)	
H4	0.6517	0.6756	0.2761	0.023*	
C5	0.5290 (4)	0.6222 (3)	0.3427 (4)	0.0194 (10)	
Н5	0.5202	0.5709	0.2986	0.023*	
C6	0.4613 (4)	0.6331 (3)	0.4226 (4)	0.0157 (9)	
C7	0.3764 (4)	0.5671 (3)	0.4269 (4)	0.0148 (9)	
H7	0.3662	0.5222	0.3721	0.018*	
N2′	0.2226 (4)	0.4984 (3)	0.4777 (4)	0.0225 (10)	0.172 (3)

C8	0.2226 (4)	0.4984 (3)	0.4777 (4)	0.0225 (10)	0.828 (3)
С9	0.0485 (5)	0.3874 (4)	0.3578 (6)	0.0248 (15)	0.828 (3)
H9A	0.0055	0.4093	0.4116	0.030*	0.828 (3)
H9B	-0.0105	0.3790	0.2834	0.030*	0.828 (3)
C9′	0.097 (3)	0.3909 (19)	0.3636 (16)	0.025*	0.172 (3)
H9'A	0.0164	0.3980	0.3113	0.030*	0.172 (3)
H9′B	0.1427	0.4426	0.3538	0.030*	0.172 (3)
C10	0.1023 (6)	0.3020 (5)	0.3993 (6)	0.0410 (18)	0.828 (3)
H10A	0.0395	0.2618	0.4051	0.061*	0.828 (3)
H10B	0.1588	0.3091	0.4742	0.061*	0.828 (3)
H10C	0.1437	0.2791	0.3458	0.061*	0.828 (3)
C10′	0.152 (3)	0.3162 (19)	0.320 (3)	0.041*	0.172 (3)
H10D	0.1517	0.3270	0.2410	0.061*	0.172 (3)
H10E	0.1065	0.2637	0.3240	0.061*	0.172 (3)
H10F	0.2339	0.3088	0.3665	0.061*	0.172 (3)
C11	0.1832 (4)	0.4694 (3)	0.7413 (4)	0.0167 (9)	
H11	0.1265	0.4251	0.7142	0.020*	
C12	0.2075 (4)	0.4904 (3)	0.8601 (4)	0.0183 (10)	
C13	0.1371 (4)	0.4507 (3)	0.9225 (4)	0.0241 (11)	
H13	0.0770	0.4111	0.8856	0.029*	
C14	0.1538 (4)	0.4683 (4)	1.0362 (4)	0.0290 (12)	
H14	0.1043	0.4424	1.0770	0.035*	
C15	0.2443 (5)	0.5245 (3)	1.0904 (4)	0.0274 (11)	
H15	0.2567	0.5363	1.1690	0.033*	
C16	0.3160 (4)	0.5633 (3)	1.0326 (4)	0.0247 (11)	
H16	0.3781	0.6004	1.0720	0.030*	
C17	0.2984 (4)	0.5486 (3)	0.9154 (4)	0.0185 (10)	
C18	0.6216 (5)	0.6806 (3)	0.9658 (4)	0.0290 (12)	
H18A	0.5758	0.6778	1.0219	0.044*	
H18B	0.7066	0.6824	1.0050	0.044*	
H18C	0.6046	0.6296	0.9168	0.044*	
C19	0.6776 (5)	0.7611 (5)	0.7925 (5)	0.0467 (16)	
H19A	0.6667	0.8091	0.7384	0.070*	
H19B	0.6589	0.7066	0.7508	0.070*	
H19C	0.7603	0.7599	0.8390	0.070*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
U	0.01231 (9)	0.01200 (8)	0.01301 (9)	-0.00072 (6)	0.00096 (6)	-0.00015 (7)
S 1	0.0401 (10)	0.0365 (9)	0.0277 (9)	-0.0149 (8)	0.0128 (8)	-0.0043 (8)
S2	0.0302 (7)	0.0166 (6)	0.0228 (6)	-0.0051 (5)	-0.0073 (5)	-0.0024 (5)
01	0.0220 (16)	0.0111 (14)	0.0189 (16)	-0.0001 (12)	0.0067 (14)	0.0000 (13)
O2	0.0299 (18)	0.0282 (18)	0.0153 (16)	-0.0136 (15)	-0.0002 (15)	0.0032 (15)
O3	0.0139 (15)	0.0169 (15)	0.0200 (16)	0.0015 (13)	0.0043 (13)	0.0003 (14)
O4	0.0142 (15)	0.0110 (14)	0.0210 (16)	-0.0005 (12)	-0.0025 (13)	-0.0033 (13)
05	0.0246 (17)	0.0159 (16)	0.0203 (17)	0.0008 (13)	-0.0027 (15)	-0.0029 (14)
N1	0.0130 (17)	0.0141 (18)	0.0143 (18)	-0.0002 (14)	0.0000 (15)	0.0009 (16)
N2	0.024 (2)	0.021 (2)	0.015 (2)	-0.0050 (17)	-0.0008 (18)	-0.0024 (18)
C8′	0.024 (2)	0.021 (2)	0.015 (2)	-0.0050 (17)	-0.0008 (18)	-0.0024 (18)

0.0130 (17)	0.0159 (18)	0.0138 (18)	-0.0002 (15)	0.0001 (15)	0.0008 (16)
0.0110 (19)	0.015 (2)	0.014 (2)	0.0033 (17)	-0.0005 (18)	0.0018 (18)
0.024 (2)	0.014 (2)	0.020 (2)	-0.0011 (18)	0.006 (2)	0.0013 (19)
0.021 (2)	0.015 (2)	0.026 (3)	-0.0033 (18)	0.008 (2)	0.005 (2)
0.020 (2)	0.021 (2)	0.019 (2)	0.0057 (19)	0.010 (2)	0.004 (2)
0.020 (2)	0.018 (2)	0.022 (2)	0.0042 (18)	0.010 (2)	0.003 (2)
0.016 (2)	0.014 (2)	0.015 (2)	0.0026 (17)	0.0004 (18)	0.0012 (18)
0.017 (2)	0.013 (2)	0.012 (2)	-0.0002 (17)	0.0006 (18)	-0.0017 (18)
0.021 (2)	0.018 (2)	0.022 (2)	-0.0031 (19)	-0.007 (2)	0.003 (2)
0.021 (2)	0.018 (2)	0.022 (2)	-0.0031 (19)	-0.007 (2)	0.003 (2)
0.013 (3)	0.026 (3)	0.033 (4)	-0.008 (3)	0.000 (3)	-0.005 (3)
0.035 (4)	0.046 (4)	0.041 (4)	-0.009 (3)	0.008 (3)	-0.001 (4)
0.012 (2)	0.015 (2)	0.020 (2)	-0.0007 (17)	-0.0003 (19)	0.0026 (19)
0.017 (2)	0.019 (2)	0.017 (2)	0.0047 (18)	0.0018 (19)	0.004 (2)
0.020 (2)	0.028 (3)	0.024 (3)	0.001 (2)	0.004 (2)	0.002 (2)
0.025 (3)	0.041 (3)	0.024 (3)	0.001 (2)	0.012 (2)	0.009 (2)
0.037 (3)	0.030 (3)	0.017 (2)	0.013 (2)	0.009 (2)	0.003 (2)
0.033 (3)	0.021 (2)	0.015 (2)	0.001 (2)	-0.002 (2)	0.001 (2)
0.024 (2)	0.012 (2)	0.017 (2)	0.0016 (18)	0.001 (2)	0.0013 (19)
0.032 (3)	0.019 (2)	0.026 (3)	0.002 (2)	-0.009 (2)	0.000 (2)
0.034 (3)	0.066 (4)	0.036 (3)	-0.020 (3)	0.004 (3)	-0.007 (3)
	0.0130 (17) 0.0110 (19) 0.024 (2) 0.021 (2) 0.020 (2) 0.020 (2) 0.016 (2) 0.017 (2) 0.021 (2) 0.021 (2) 0.021 (2) 0.035 (4) 0.035 (4) 0.012 (2) 0.020 (2) 0.025 (3) 0.037 (3) 0.033 (3) 0.024 (2) 0.032 (3) 0.034 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

U—01	2.267 (3)	C9—C10	1.494 (9)
U—O2	2.233 (3)	С9—Н9А	0.9900
U—O3	1.787 (3)	С9—Н9В	0.9900
U—O4	1.792 (3)	C9′—C10′	1.493 (13)
U—O5	2.395 (3)	С9′—Н9′А	0.9900
U—N1	2.547 (4)	С9′—Н9′В	0.9900
U—N3	2.603 (4)	C10—H10A	0.9800
S1—C9	1.821 (6)	C10—H10B	0.9800
S1′—C9′	1.819 (12)	C10—H10C	0.9800
S2—O5	1.532 (3)	C10'—H10D	0.9800
S2—C18	1.773 (5)	C10′—H10E	0.9800
S2—C19	1.779 (6)	C10'—H10F	0.9800
O1—C1	1.316 (5)	C11—C12	1.440 (6)
O2—C17	1.310 (6)	C11—H11	0.9500
N1—C7	1.312 (5)	C12—C13	1.407 (7)
N1—N2′	1.415 (5)	C12—C17	1.419 (6)
N2—N3	1.402 (5)	C13—C14	1.377 (7)
N3—C11	1.292 (6)	С13—Н13	0.9500
C1—C2	1.414 (6)	C14—C15	1.393 (7)
C1—C6	1.419 (6)	C14—H14	0.9500
C2—C3	1.379 (6)	C15—C16	1.373 (7)
C2—H2	0.9500	C15—H15	0.9500
C3—C4	1.398 (6)	C16—C17	1.409 (6)
С3—Н3	0.9500	C16—H16	0.9500
C4—C5	1.358 (6)	C18—H18A	0.9800
C4—H4	0.9500	C18—H18B	0.9800

	1 10 5 (6)	CIA HIAC	0.0000
C5—C6	1.425 (6)	C18—H18C	0.9800
С5—Н5	0.9500	C19—H19A	0.9800
C6—C7	1.437 (6)	C19—H19B	0.9800
С7—Н7	0.9500	C19—H19C	0.9800
03—U—04	177.84 (14)	S1—C9—H9A	108.7
O3—U—O2	94.71 (13)	С10—С9—Н9В	108.7
O4—U—O2	87.36 (13)	S1—C9—H9B	108.7
03—U—01	89.60 (12)	H9A—C9—H9B	107.6
04—U—01	88.65 (12)	C10′—C9′—S1′	124 (2)
02—U—01	160.62 (11)	С10'—С9'—Н9'А	106.4
03—U—05	89.31 (12)	S1'—C9'—H9'A	106.4
04—U—05	91.63 (12)	С10′—С9′—Н9′В	106.4
02—U—05	81.36 (11)	S1'—C9'—H9'B	106.4
01—U—05	79.81 (11)	H9'A—C9'—H9'B	106.5
O3—U—N1	95.21 (13)	C9—C10—H10A	109.5
04—U—N1	83.00 (12)	C9-C10-H10B	109.5
02-U-N1	128.10(12)	H10A—C10—H10B	109.5
01 - U - N1	70.05 (11)	C9-C10-H10C	109.5
05—U—N1	149 45 (11)	H10A - C10 - H10C	109.5
03_U_N3	81 27 (12)	H10B-C10-H10C	109.5
04 U N3	01.27(12) 08 00 (12)	C_{0}^{0} C_{10}^{0} H_{10}^{0}	109.5
02 U N	98.90 (12) 60.45 (11)	$C_{0}^{0} = C_{10}^{0} = H_{10}^{0} D_{10}^{0}$	109.5
02-0-N3	120.02(11)	$H_{10} = C_{10} = H_{10} = H_{10}$	109.5
01 - 0 - N3	129.92(11) 148.30(11)	C_{0} C_{10} $-H_{10E}$	109.5
03-0-N3	(140.30(11))	$C_{9} = C_{10} = H_{10F}$	109.5
NI = 0 = N3	02.04(11)	H10D - C10 - H10F	109.5
05-52-018	106.6 (2)	HI0E—CI0—HI0F	109.5
05-52-019	105.3(2)	N3 - C11 - C12	127.3 (4)
C18—S2—C19	98.3 (3)	N3—CII—HII	116.3
	130.0 (3)	CI2—CII—HII	116.3
C17—02—U	142.8 (3)	C13—C12—C17	119.5 (4)
S2—O5—U	133.10 (18)	C13—C12—C11	117.6 (4)
C7—N1—N2′	116.1 (4)	C17—C12—C11	122.8 (4)
C7—N1—U	123.5 (3)	C14—C13—C12	121.2 (5)
N2'—N1—U	119.1 (3)	C14—C13—H13	119.4
C11—N3—N2	111.4 (4)	C12—C13—H13	119.4
C11—N3—U	128.4 (3)	C13—C14—C15	119.0 (5)
N2—N3—U	119.0 (3)	C13—C14—H14	120.5
01—C1—C2	120.0 (4)	C15—C14—H14	120.5
01—C1—C6	121.8 (4)	C16—C15—C14	121.4 (5)
C2-C1-C6	118.1 (4)	C16—C15—H15	119.3
C3—C2—C1	120.4 (4)	C14—C15—H15	119.3
С3—С2—Н2	119.8	C15-C16-C17	120.8 (5)
C1—C2—H2	119.8	C15—C16—H16	119.6
C2—C3—C4	121.4 (4)	C17—C16—H16	119.6
С2—С3—Н3	119.3	O2—C17—C16	120.7 (4)
С4—С3—Н3	119.3	O2—C17—C12	121.2 (4)
C5—C4—C3	119.7 (4)	C16—C17—C12	118.1 (4)
C5—C4—H4	120.2	S2—C18—H18A	109.5
	. •=		

C3—C4—H4	120.2	S2—C18—H18B	109.5
C4—C5—C6	120.9 (4)	H18A—C18—H18B	109.5
C4—C5—H5	119.5	S2—C18—H18C	109.5
С6—С5—Н5	119.5	H18A—C18—H18C	109.5
C5—C6—C1	119.5 (4)	H18B—C18—H18C	109.5
C5—C6—C7	117.3 (4)	S2-C19-H19A	109.5
C1—C6—C7	122.9 (4)	S2—C19—H19B	109.5
N1—C7—C6	126.2 (4)	H19A—C19—H19B	109.5
N1—C7—H7	116.9	S2—C19—H19C	109.5
С6—С7—Н7	116.9	H19A—C19—H19C	109.5
C10—C9—S1	114.2 (4)	H19B—C19—H19C	109.5
С10—С9—Н9А	108.7		
03 - U - 01 - C1	-149.9(3)	04—U—N3—N2	-89.6(3)
04-U-01-C1	28.9 (3)	Ω_{2} U N3 N2	-173.4(3)
02-U-01-C1	107.0 (4)	01-U-N3-N2	6.1 (3)
05-U-01-C1	120.8 (3)	05-U-N3-N2	162.5(3)
N1-U-O1-C1	-54.2(3)	N1 - U - N3 - N2	-12.5(3)
$N_3 - U - O_1 - C_1$	-71.6(4)	U = 01 = C1 = C2	-1359(3)
03 - U - 02 - 017	43 8 (5)	U = 01 = 01 = 02	46 5 (5)
04 - U - 02 - C17	-1355(5)	01 - C1 - C2 - C3	-1772(4)
01 - U - 02 - 017	146 2 (4)	C6-C1-C2-C3	0.5 (6)
05 - U - 02 - C17	1324(5)	$C_1 - C_2 - C_3 - C_4$	0.3(0) 0.4(7)
$V_{1} = U_{1} = O_{2} = C_{17}$	-56.6(5)	$C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-}$	0.4(7)
N_{3} U_{-02} C_{17}	-35.0(5)	$C_{2} = C_{3} = C_{4} = C_{5} = C_{6}$	-14(7)
C18 = S2 = O5 = U	-461(3)	C4-C5-C6-C1	22(7)
C19 = S2 = O5 = U	57 7 (3)	C4-C5-C6-C7	175.9(4)
03 - U - 05 - 82	170.9(3)	01 - C1 - C6 - C5	175.9(4)
03 - 0 - 03 - 52 04 - 11 - 05 - 52	-110(3)	$C_{2}^{-}C_{1}^{-}C_{6}^{-}C_{5}^{-}$	-1.7(6)
$0^{2}-U_{-}0^{5}-S^{2}$	76.1.(3)	01 - C1 - C6 - C7	26(6)
02 - 0 - 03 - 52	-003(3)	$C_1 C_1 C_2 C_1$	-175 1 (4)
N1_U_05_\$2	-90.0(3)	N2' - N1 - C7 - C6	173.1(+) 171.9(4)
N3 U 05 S2	90.0 (3)	$N_2 = N_1 = C_7 = C_0$	-21.1(6)
$N_{3} = 0 = 0_{3} = 0_{3} = 0_{3}$	90.9(3)	$C_{-N1} = C_{7} = C_{0}$	21.1(0) 175 5 (4)
03 - 0 - N1 - C7	-516(3)	$C_{1} = C_{0} = C_{1} = N_{1}$	-110(7)
$O_{4} = O_{1} = O_{1}$	-1327(3)	$N_2 = N_3 = C_{11} = C_{12}$	-177.0(7)
02 - 0 - N1 - C7	152.7(5)	$\frac{1}{12} \frac{1}{12} \frac$	-0.7(6)
$O_1 = O_1 = O_1$	39.3(3)	$U = N_3 = C_{11} = C_{12}$	-9.7(0) 172 4 (4)
V_{3} V_{1} V_{1} V_{1} V_{2}	29.7(4)	N_{3} C_{11} C_{12} C_{13}	1/3.4(4)
$N_{3} = U_{N_{1}} = U_{1}$	-155.0(4) -66.2(2)	N_{3} C_{11} C_{12} C_{14} C_{14}	-0.0(7)
03-0-N1-N2	-00.2(3)	C17 - C12 - C13 - C14	0.9(7)
04-0-N1-N2	115.1(5)	C12 - C12 - C13 - C14	-1/9.2(4)
02-0-N1-N2	34.0(3)	C12 - C13 - C14 - C13	-1.8(7)
$O_1 = O_1 = N_1 = N_2$	-133.0(3)	C13 - C14 - C15 - C10	0.7(0) 1.2(7)
V_{3} V_{1} V_{1} V_{2}	-105.7(5)	$U_{14} = C_{13} = C_{10} = C_{17}$	1.3(7) 1.492(4)
$\frac{1}{10} - \frac{1}{10} - \frac{1}{10} \frac{1}{10} $	-79.2(4)	U = 02 = 017 = 010	$^{-140.3}(4)$
03-0-103-011	-10.3(4)	0 - 02 - 01/ - 012	32.4(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103.9(4)	C_{13} $-C_{10}$ $-C_{17}$ $-C_{12}$ C_{13} C_{15} C_{16} C_{17} C_{12} C_{12}	1/0.3(4)
02 - 0 - 1N3 - 011	20.1(3)	$C_{13} = C_{10} = C_{17} = C_{12}$	-2.2(7)
UI-U-IN3-UII	-100.4 (3)	$U_{13} - U_{12} - U_{17} - U_{2}$	-1/9.0(4)

supplementary materials

O5—U—N3—C11	-4.1 (5)	C11—C12—C17—O2	0.4 (7)
N1—U—N3—C11	-179.0 (4)	C13—C12—C17—C16	1.1 (6)
O3—U—N3—N2	88.2 (3)	C11—C12—C17—C16	-178.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5····O4 ⁱ	0.95	2.48	3.322 (5)	147

Symmetry code: (i) -x+1, -y+1, -z+1.